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Failure Prediction of Underwater Structures- 
Subdomain Decomposition and Meshfree Methods 

By Ted Belytschko 

Introduction: 

Meshfree methods for fracture have been extended by considering more general classes of basis 
functions. These methods do not require any elements, and boundaries and interfaces, such as cracks, 
are easy to propagate in the model since it does not involve remeshing. The versatility of these methods 
has been enhanced by developing new vector level set methods. In these methods, the crack is 
represented entirely by vector functions at the nodes of the meshless model. Therefore, there is no need 
for alternative representations of the crack as it evolves. This extra data is only needed at nodes in a 
subdomain around the crack. The method has been applied to a variety of crack growth problems in two 
dimensions including problems involving welds and fillets. Comparisons with experiments show excellent 
agreement. Extensions of the method to three dimensions are now under development. Further studies 
have been made of the stability of particle forms of meshless methods. It has been shown that in two 
dimensions the widely used Eulerian kernels distort the onset of material instability and often manifest 
instabilities that look like material instabilities. It has also been shown that Lagrangian kernels that were 
proposed earlier in this grant do not distort the onset of material instabilities. 

Domain decomposition methods, whereby a fine scale model can be linked with a coarse scale model, are 
being developed. These methods are useful when a part of a ship where severe damage is expected must 
be modeled by a refined mesh for accuracy and linked to a coarser mesh of the remainder of the ship. 
The method that has been developed is based on an overlapping domain decomposition method. Part of 
the fine scale subdomain overlaps the coarse scale subdomain. in each time step, the fine scale solution 
is projected on the coarse scale solution so that spurious reflections on the interface are prevented. 
Methods have also been developed in which a smaller time step can be used in the fine scale subdomain. 
The method has been studied in model one and two-dimensional problems. Results show that spurious 
reflections are almost totally eliminated. 

1. Stability of Meshless IMethods based on Lagrangian and Eulerian kernels 

A major difficult of meshless methods such as SPH and EFG has been the appearance of a so-called 
tensile instability. We have shown that the tensile instability is even more pervasive than it appears at first, 
for it drastically changes the stable material domain. Therefore, the prediction of cracks or shear bands 
by a meshless method with a distorted material stability domain can lead to highly erroneous results. In 
the following we show the analysis which has led us to that conclusion. We also propose a remedy, the 
use of Lagrangian kernels. 

An isotropic hyperelastic material model is used the study the domain of material stability. Its potential is 
given by 

1      A      1      A '^-c,k ^\c^n ~^hl (1.1) 

where Cj and Cj are constants, /j, 1^ and /j are the principal invariants of the right Cauchy-Green 

deformation tensor C. 



Based on a linearized stability analysis the material instability in the continuum is given. Fig. 1.1 shows the 
stable domain of continuum. We call the stable domain as calculated for the partial differential equation 
the "exacf stable domain, even though it is obtained numerically. 

^   2- 

Fig. 1.1 : The stable domain of continuum 

^   2 

^ stress points wHh 
Lagiangian kernel 

 Lagiangian kernel 

 Euleiian kernel 

(a) Lagrangian kernel (b) Eulerian kernel 
Fig. 1.2 : Stable domain of particle methods with stress point integration 

We studied the material instability for particle methods with either Lagrangian kernel or Eulerian kernel. 
Fig. 1.2(a) shows that Lagrangian kernel can exactly reproduce the material instability. When Eulerian 
kernel is used, the material instability is distorted severely as shown in Fig. 1.2(b). 

^As a compressible, homogeneous and isotropic, elastic material proposed by Blatz and Ko, Blatz-Ko 
material has the following potential function 

W{l„I„I,)=j(l,J-'+2J-5) (1.2) 

where J = .yjj\  and // is a constant. 



tlieoritical solution 

continuum anafysis in 3D 

Q, continuum analysis in 2D 

Fig. 1.3: Stable domain from theoretical solution compared with the solution from PDE 
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Fig. 1.4: Stable domain calculated from particle methods 

Knowies and Sternberg gave the stable criteria for Blatz-Ko material by an analysis of the associated 
issue of ellipticity. The stable domain is a hexagon which is shown in Fig. 1.4. The linearized stability 
analysis is used as before in continuum and particle methods to study the stable domain, compared to the 
theoretical solution. When we use the two-dimensional stability analysis for the continuum, the stable 
domain is located between the two rays from the original point as shown in Fig. 1.4. It is identical to the 
stable domain in Fig. 1.4, which is calculated from the particle methods with Lagrangian kernel. Fig. 1.4 
also shows that the stable domain is extremely distorted when calculated from the particle methods with 
Eulerian kernel. 

2. Effect of Cohesive Laws on Oracle 

In order to study cohesive cracks, we have developed a new enrichment techniques by which curved 
cohesive cracks can be treated with higher order enrichments. The crack tip can be located anywhere 
within an element. The technique is based on Chen's (2003) development for constant strain triangles 
and extended to quadratic elements. An essential feature in applying the method to the static cohesive 
crack model is that the crack opening should be quadratic in the vicinity of the crack tip. 

Moes and Belytschko (2002) implemented the XFEM scheme for cohesive cracks in linear triangular 
elements. In their work, a linear element is enriched by the step function if it is completely cut by a crack, 
and by the branch function if the crack tip is located inside the element. 



In the enrichment developed here, an element containing a crack tip is enriched by the step function 
whose gradient is normal to the crack and a polynomial along the crack. We consider polynomials of first 
and second order but the method is applicable to any order. The contribution of the paper lies in that the 
branch function used in previous XFEM (Moes and Belytschko 2002) formulations for cracks is dropped, 
so that the partition of unity holds in the entire enriched subdomain. It is shown that this yields good stress 
results near the crack tip for cohesive crack models. Both a first order scheme and a second order 
scheme are developed by this procedure. The scheme can be applied to various nonlinear softening 
laws. 

Branch functions, typically, r" sin(i9/2) where m = 0.5, 2.0, etc., have been used for the enrichment of 
the tip element (Belytschko and Black 1999; Moes and Belytschko 2002; Stazi et al. 2003). For a 
discussion of the branch function, see Belytschko et al. (2001). When branch functions are used in 
conjunction with step functions, as in Moes et al. (1999), the partition of unity property does not hold in the 
elements surrounding the tip element. The enrichment of those elements is a local partition of unity and it 
must be blended to the rest of the domain for optimal performance because the branch function does not 
vanish at the edges of the tip element. Note that the branch function is not a piecewise constant function 
like the sign function. For a discussion of local partitions of unity and blending, see Chessa et al. (2003). 

In order to avoid the difficulties associated with the branch functions in the tip element, a new enrichment 
has been developed. This procedure is similar to that given by Chen (2003) but it is generalized to 
quadratic elements in this work. It can be applied to elements of any order without difficulty. 

Fig. 2.1: A two dimensional domain containing a cohesive crack inside the domain. 

Consider a crack F^ in a two dimensional body Q with boundary F as shown in Fig. 2.2. We denote by 

X the spatial coordinates. The crack is described implicitly by the level set function ^(x) = 0 and its two 

end points Xj, I = 1,2. Depending on the cohesive law, a traction r^ is applied across the crack surface 
near the tip. 

The displacement field u of the body can be additively decomposed into a continuous part u^g„, and a 

discontinuous part M^^^ :  u{x) = u^„„, (x) + u^^^^{x). The discontinuous part of the displacement field is 

approximated by standard shape functions A^;(jc), so 

^coAx)= S^/W"/ (2.1) 
leN,. 

where iV,„, is the total set of nodes and Uj are nodal displacements. 



Fig. 2.2: The enriched domain Q^^^ (shaded area) and the enriched nodes N^„^ (circles), where a 

virtual (dashed) line segment is added to calculate the signed distance function in the tip element; at 
square nodes, the enrichment parameters Oj =0 

If we consider a triangulation on the body Q as shown in Fig. 2.2, then the discontinuous part of the 
displacement field can be limited to the elements that contain the crack. We call this subdomain Qg„^. 

Let N^^ be the set of nodes of the elements cut by the crack F^. The discontinuous part of the 

displacement field can then be written as (Belytschko and Black 1999). 

u,,M)= Y^j(x)%(x)a, (2.2) 

where T, (x) = sign{^{x)) - sign{<f>,) and QJ are enrichment parameters. 

P{fip,  0 ) 

(c) (d) 

Fig. 2.3: Enrichment displacement field u^^^^ in a 6-node quadratic tip element for two crack directions 

and the corresponding parent domains; the shaded areas represent the enriched region Q^^ . 

The enrichment developed for a 3-node element by Chen (2003) is generalized to a 6-node element (Fig. 
3) as follows. We consider an element where the crack passes through side 24. Let the direction of the 
crack be such that it intersects side 13. Other relationships between the element and the crack can be 
obtained by permuting the node numbers. We wish to construct an enrichment that vanishes on the two 
edges 12 and 13 (which is necessary for compatibility), and is continuous across edge 23 with the field in 
the adjacent element. To meet these conditions, only nodes 3, 5, 6 are enriched and the discontinuous 
displacement field in the tip element is 



«... = iV3(^*)T3(#*)a3 + N,{4*)%i4*)as + N,{^*)%(^*)a, (2.3) 

where ^' are the parent coordinates of the shaded region 23P in Fig. 3b, i.e. the element generated by 
side 23, side 3 P and P2, where P is the intersection point of the line joining node 2 to the crack tip and 
side 32. The shaded parent area coordinates are related by ^3* = 1 - ^* - ^2 ^""^ 

4^3(^*) = sign{i^{^*))-sign{(f)^). The relation between ^* and ^ is given by 

^=1- and     4l = ^2 (2.4) 
vip 

where (^^p is the area coordinate of point P. 

When the direction of the crack intersects side 31 (Fig. 3c,d), then the discontinuous part of the 
displacement field is 

«.,.c = N,i^*)%(^*)a, + N,(^*)^,i^*)a, + N,(^*)%(^*)a, (2.5) 
where 

^IP. P ^r,W P'   = .22^ and (2.6) 
np 

Based on the preceding, we can simply write the discontinuous displacement of a quadratic tip element as 

«..c= Y.^A^yn.i^j (2.7) 
/eA'„ 

with ay = 0 at three of the nodes as shown in Fig. 2.3. 
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Fig. 2.4: A double cantilever-beam (DCB) with 30% notch and linear and bilinear softening laws. 

In order to study the new XFEM scheme, we solved the double-cantilever-beam (DCB) problem shown in 
Fig. 2.4; a linear softening law is used. Young's modulus is 36.5 GPa and Poisson's ratio is 0.18. The 
results obtained by the new XFEM scheme are compared to those obtained by the static condensation 
method (e.g. Zi and Bazant 2003) which has extensively been used to analyze the fracture properties of 
many experimental tests when the direction of crack propagation is known. The static condensation 
method is also known as the pseudo boundary integral (PBI) method. 

The weak form and the discretized equation of equilibrium are similar to Moes and Belytschko's (2002), 
so it is omitted here. But, the condition that the stress at the crack tip should be equal to the tensile 
strength is used instead of the zero stress intensity factor for its simplicity. The equilibrium condition and 
the stress condition are solved simultaneously by the Newton-Raphson method. 
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Fig. 2.5: Relative errors in load-deflection histories obtained by the extended finite element methods 
with linear elements (empty circles) and quadratic elements (solid circles). 

The convergence rates for the linear and quadratic elements for various mesh refinements are shown in 
Fig. 2.5 (left). The convergence rate of the second order method, 2.23, is much better than the first order 
method, 0.48, respectively. 

The load-deflection histories for the quadratic elements with the stress condition are plotted and compared 
to the result by the static condensation method in Fig. 2.5 (right). The load deflection histories are 
calculated for three different mesh refinements and, for all cases, agree well with the reference. 

0 0.4 0 0.1        0.2       0.3 
Distance [m] 

"T 
0.1        0.2        0.3 

Distance [m] 

Fig. 2.6: Comparison of dimensionless crack opening and stresses a^ by the XFEI\/1 method (dashed 

line: h=2 mm, dash-dot line: h=5 mm, dotted line: h=11 mm) and the static condensation method 
(solid line). 

The crack opening and the stress (T^ is shown in Fig. 2.6 for three different mesh refinements. Because 

the enrichment function is based on a partition of unity, spurious crack opening is not obsen/ed even in the 
coarse mesh. The crack opening profiles for h= 2 mm almost coincide with the reference crack opening 
profiles so that the difference is indiscernible. 

The stresses on the dashed Hne in Fig. 2.4(a) are plotted in Fig. 2.6. It can be seen that the change of the 
stress profiles as the crack advances in the fracture process zone is approximately self-similar. As the 
mesh is refined, the stress profiles converge to the reference profiles. The stress profiles for h=2 mm 
agree well with the reference profiles. 
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Fig. 2.7: Comparison of the results by the linear (solid line) and the bilinear (dashed line) softening 
law; the load-deflection histories (left) and the stresses a^ (right). 

Because of their simplicity, linear softening laws are frequently used. However, when post-peak behavior 
is important, nonlinear softening laws may be more accurate. The method developed can be applied to 
nonlinear softening laws as well as linear softening laws. One might think that if the fracture energy of two 
different softening law is identical, the load-deflection curve does not change. 

in order to study the effect of cohesive laws, a bilinear softening law, shown in Fig. 2.4 (right), is taken into 
account. The tensile strength and the fracture energy of the bilinear softening law (dashed line) are the 
same as those of the linear softening law (solid line). The load-deflection histories for the two are 
compared in Fig. 2.7 (left). The peak load associated with the bilinear softening law is smaller than the 
linear one and the shapes of the load-deflection histories differ as well. As one can see in Fig. 2.7 (right), 
the fracture process zones are not fully developed at the peak loads, to which only the initial parts of the 
softening curves in Fig. 2.4 (right) contribute. Therefore the fracture energies associated with the peak 
loads are different although the fracture energies for the two softening laws are the same. 

3. Adaptivity in the eiement free Gaierlcin (EFG) method 

We have studied the adaptive procedures that provide accurate solutions to dynamic nonlinear with 
cohesive cracking problems with minimal user intervention. The key feature of the proposed 
methodologies are the generation of models with a prescribed level of accuracy via adaptivity. 

The raison d'etre for meshfree methods is to totally avoid any mesh generation. Thus a true meshfree 
method should be able to start with a solid model or geometric model and provide a solution of the 
requisite accuracy. Obviously, adaptivity is a key ingredient in any such procedure, since in automatic 
model generation, user intervention in the assignment of refinement would be unacceptable. 

The procedure proposed here combines meshfree methods with so-called Cartesian (or structured 
methods), in these methods, the arrangement of the nodes (or particles) is structured as shown in Fig. 
3.2. Although at first such a combination appears illogical, since a key advantage of meshfree methods is 
their ability to handle arbitrary clouds of nodes, after careful consideration we concluded there is little 
reason to model objects with a random cloud of particles, and in fact, the construction of random clouds 
with effective fidelity would be more difficult than the construction of structured node sets. Furthermore, 
random node arrangements would complicate the implementation of adaptivity, post-processing and 
parallelization. 

One could question the use of meshfree methods in a structured context; if the nodal arrangement is 
structured, it would appear that standard finite difference methods would be optimal. However, finite 
difference methods are quite unwieldy in treating the irregular arrangements of nodes that arise in an 
adaptive procedure. Furthermore, meshfree methods through partition of unity concepts enable the 



method to incorporate features such as internal discontinuities, singular solutions, and handbook 
solutions. These features endow the methodology with powerful advantages: discontinuous partitions of 
unity can treat arbitrary cracl<s without remeshing, singular partitions of unity can treat elastic near tip 
fields for cracks and dislocations without mesh refinement, handbook solutions can treat holes and 
inclusions that are smaller than the scale of the discretization. 

Some of these ideas have already been presented in the finite element context. Strouboulis et al. (2001) 
in the generalized finite element method introduced the concept of adding handbook solutions for 
subscale features. Belytschko et al. (2003) developed a structured finite element method based on implicit 
surface definitions with arbitrary internal features such as cracks and and sliding interfaces. Belytschko et 
al. (2003) showed how this methodology could be applied to topology optimization. 

Another question the reader may pose is why use meshfree methods instead of higher order finite 
elements. Indeed spectral finite elements are extremely powerful for treating many problems. However, for 
the nonsmooth problems found in solid mechanics, such aselastic-plastic materials and contact-impact, p- 
adaptivity is inferior to h-adaptivity. Furthermore, the implementation of h-adaptivity for finite elements 
even in a structured mesh is much more difficult than for meshfree methods. 

We will use the element-free Galerkin (EFG) meshfree method in this study. This method uses moving 
least square (MLS) approximations. We will not considei- some recent methods such as radial basis 
functions and so called truly meshless methods. The former require multipolar methods for reasonable 
speed on large models. The truly meshless methods are more in the spirit of clouds of particles, which are 
not in the spirit of the methodology proposed here. 

We have chosen a Total Lagrangian description. The momentum equation can then be written as 

where /JQ is the initial density, t/, are the displacements, Pj are the nominal stresses, b, are the body 

forces and 1^ are the external forces. The test functions are approximated by 

,    Su, = Y^duu<^AX,) (3.2) 

where the shape functions <I>j(A',) are the EFG shape functions. The integrals are evaluated by an 

integration based on a background mesh. 

The adaptivity approach is based on an interpolation error. Regions with a large local error, i.e. high strain 
gradients, are refined. The refinement strategy is illustrated in Fig. 3.2. The cell is divided into four smaller 
cells of equal size. In our numerical studies large errors occurred if the size of the neighboring cells differs 
too much. Therefore, a cell is refined, if it shares more than two edges with a neighbor cell as shown in 
Fig. 3.2 where the last refinement step from Fig. 3.1 is chosen as source. 

In dynamic problems, a lumped or diagonal mass matrix is used instead of a consistent one since it 
simplifies the computation. In particle methods, there exist different techniques to compute the masses of 
the particles. A common procedure is to assign the masses and volumes to the particles according to a 
Voronol diagram (see Fig. 3.3) before beginning the time integration. Another way is to establish a 
diagonal mass matrix from the consistent mass matrix using the row sum technique. 

If adaptivity takes place, it becomes necessary to recompute the new masses and volumes after every 
refinement step. It is computationally easier to compute the diagonal mass matrix from the consistent one, 
especially if particles are added in an irregular pattern. Therefore, we have chosen this approach. 



If an incremental stress strain law is applied, the stresses have to be assigned to the new particles. Also 
values of the velocity have to be transformed to the new particles. Ail values are obtained by an MLS fit, 
i.e. via the approximation. Especially, when the particles are arranged in an irregular pattern, this 
procedure is straightfonward. The new interpolation radius h is chosen according to the maximum distance 
of the neighbor particles. In the particle sums, an average of hjj = 0.5{hj + hj)\s calculated to obtain a 

symmetric interaction. 

The response of notched concrete under dynamic loading have been studied. Here, we consider the beam 
as shown in Fig. 3.4. We compare again the crack pattern obtained with a continuum model and the 
discrete crack model. EFG with cell integration was taken to solve this problem. Fig. 3.5 shows the crack 
obtained from the simulation with a continuum damage model and the discrete crack model. It can be 
seen that the adaptive method refines around the path of the crack, so that a very accurate path can be 
obtained. Fig. 3. 6 illustrated the refinement of the crack close to the notch. 
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Fig. 3.1: Refinement strategy 
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Fig. 3.5: The crack pattern of the notched concrete beam in the numerical simulation 
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Fig. 3.6: Refinement around the crack 

4. Domain decomposition 

A method has been developed for coupling fine scale models of subdomains with coarse scale models. 
The essential feature of any such coupling is that it should not lead to spurious reflections off the interface. 
Direct linkages of fine and coarse scale models lead to nonphysical reflections because the impedance of 
the coarse scale model differs significantly from that of the fine scale model. In face, for frequencies 
above the cutoff frequency of the fine scale model, the coarse scale model appears almost as a rigid 
boundary condition. 

The coupling method is based on overlapping domain decomposition techniques, see Belytschko and 
Xiao (2003). The essential idea is that on the overlapping domain, the fine scale solution is projected in 
each time step onto the coarse scale solution.. This is accomplished by scaling the Hamiltonian within the 
bridging domain and constraining the velocities of the overlapping nodes by Lagrange multipliers. 

The Hamiltonian is defined as: 

H = K+E = |j— + W{^)dQ. (4.1) 

where P is the momentum, p is the density, F is the gradient of deformation, and W is the internal 

energy or strain energy. 

The equations of motion can be written as: 

X =  and       P =  
aP dx 

(4.2) 

The total Hamiltonian of Bridging domain multiscale method for FEM is written as the linear combination of 

Hamiltonian from fine mesh Q^ and coarse mesh Q*' of FEIVI, as shown in Fig. 4.2. 

H = PH'' +0.- P)H^ = p[f^ + E^ )+ (l - jiif^ + £^ ) (4.3) 

where yff is a scalar parameter which ranges from 0 to 1 in bridging domain Q    . The bridging domain is 

also called overlapping domain. 
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• fine scale node  • coarse sx^ale node 

£1'   p=1 Q"* P=0      D." 

Fig. 4.1 : Overlapping domain of bridging domain multiscale method 

(4.4) 

Tlie two models are constrained on tlie overlapping subdomain Q.     by 

g/ = fc/} = k(X,)- ^^} = JE^yCX/W -dA = 0 

I.e. tlie fine mesii displacements d confonn to tlie coarse mesh displacements u at the discrete 
positions of the fine mesh nodes. The constraints are applied on the each component of the 
displacements. 

When Lagranglan multiplier method is applied, the total Hamiltonian will be given as: 
(4.5) 

where X is the vector of Lagrange multipliers which are assigned on the discrete fine mesh nodes in the 
bridging domain. 

Then, the equations of motion are: 
8H, 

P = - 
dx 

I.e. 

—- ;i rext      f int       V^ 1 y ^^J   _ fexl       i-int 

Mjuj = ¥r-¥'r-Y,^i 

ddj 

5g. 

f/ 

duj 
  piexf     17'"^     V 

J 1 j 

where 

^/ = E L (1 - MX)K(XK,(XVQJ 

ax 

Ff = 1^,(1-;^(X))^P^Q 

in Q' 

in Q^ 

(4.6) 
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if = L fi(x)Njp,hd^l + f j3(x)N-idr', 

W = L (1 - l3(x))NjP,hdQP, + L (1 - P{^))Njtdri 

We developed an explicit algorithm based on central difference method to solve these equations of motion. 
Suppose we already know the accelerations, velocities and displacement for time step n. We first obtain 
the displacements at the next time step n +1. 

1 •        c 

1..       , 
= d „„x + d rr^M + - d „.x Ar 

(4.7) 

'/(n+1)  ~ "/(«) ^ "/(«)' 'Htr in   a^ 

The accelerations for next time step can be given from (4.6) without considering the force due to the 
constraints: 

j _    ■'^     rext fint 
/(n+1) ~ _    L*/(n+l)      */("+!). m, 

u /(«+i) 
Mr 

pi ex/ TT'"' 
.'/(n+1)      '/(n+1). 

m     Qr 

z«     QQ 

(4.8) 

Then, we obtain the trial velocities: 

d7(„+i) =d;(„) +-[d/(„) +d^(„^,)jAr 

«/(„+i) = «/(«) +A^m + W/(„+i)F 

/«     Q 

in     Qr 

(4.9) 

Alternatively, the velocities at time step n + 1 can be expressed as: 

d/(„+i) = d;(„) + -[d/(„) - »^/"%^(„) + d^(„.,i) - m7^f/(„^i) JA/ 

j 

"/(„+i) =»/(«) + 2l-"^w -^J^^m +«/(„+i) --^7'F/(„+I)]A? 

= M/(«+1)--^7'A^5]GS^J 

(4.10) 

(4.11) 

where  G^j = ^2 

5u = [^y/l].  Gj,= ad; = [-^/il] ■  ^/ = 2l^^(«) +^/(«+I)1 d®"°t® the 

unknown Lagrange multipliers. The above velocities satisfy the constraints (4) in time derivative form 

g/(«+i) = »(X/)(„+,) - d;(„+i) = 5]^/(^y)"y(«+i) - ^/(»+I) (4-12) 
J 

Substituting (4.10) and (4.11) into (4.12), the unknown Lagrange multipliers can be obtained by solving the 
following equations: 

Y.^ll'^L^g, (4.13) 
L 
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where 

A;i =^tM]'Y.^j,Glj -Mrnj'Gl , g) =Y.^jjiCj -A] 

After obtaining the Lagrange multipliers, the corrected velocities at time n + 1 are given in (4.10) and 
(4.11). 

To study the effectiveness of this method, a wave propagation problem in a one-dimensional rod is 
studied for both the bridging domain coupling method and an edge-to-edge coupling method. The initial 
wave is a combination of high frequency wave and low frequency wave. Spurious wave reflection occurs 
when edge-to-edge coupling method is used as shown in Fig. 4.2(b). However, Fig. 4.2(a) shows that 
bridging domain coupling method can eliminate the wave reflection without any additional filtering or 
viscosities. Fig. 4.3 shows the histories of energy in fine mesh domain or coarse mesh domain. After the 
low frequency wave passes through the coarse mesh domain, similar energies pass through whatever 
coupling method is used. In fine mesh domain, the energy of high frequency remains from edge-to-edge 
coupling method due to the spurious wave reflection, but it is reduced to zero from bridging domain 
coupling method as shown in Fig. 4.3(a). 

p      DXOt 

I 
E  oiins 

8 a 

D 

• line mash nodes 

o coarae mesh nodfts 

8- 
D 

(UD19 

- line mesh nodes 

Dmi o coarse mesh nodes 

aocos A 
0 —^Il^—/     V- 

X(nm) X(nm) 

(a) bridging domain coupling (b) edge-to-edge coupling 
Fig. 4.2 : Spurious wave reflection in multiscale methods 

 bridging dqmar couplng 
 edge-to-eilgs coupling 

S 1E-1J5 

c 
Ul 

-bridging domain coupling 
' edge-to-edge coupling 

I. 

lime(ps) 

(a) fine mesh domain 

tlme(ps) 

(b) coarse mesh domain 
Fig. 4.3 : Histories of energy 

Cylindrical wave.propagation in two-dimensional plate is shown in Fig. 4.4. Fig. 4.4(a) shows the bridging 
domain coupling model which we use here. Fig. 4.4 (b)-(d) show the configurations of wave propagation at 
three different times. There is almost no spurious wave reflection when cylinder wave propagates from 
fine mesh domain to coarse mesh domain. 
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(a) bridging domain nnodel (b) t = 1 second 

(c) t = 2 second (d) t = 3 second 
Fig. 4.4 : Cylinder wave propagation example 
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